Percolation for the Vacant Set of Random Interlacements - Mathematics > ProbabilityReportar como inadecuado




Percolation for the Vacant Set of Random Interlacements - Mathematics > Probability - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Abstract: We investigate random interlacements on Z^d, d bigger or equal to 3. Thismodel recently introduced in arXiv:0704.2560 corresponds to a Poisson cloud onthe space of doubly infinite trajectories modulo time-shift tending to infinityat positive and negative infinite times. A non-negative parameter u measureshow many trajectories enter the picture. Our main interest lies in thepercolative properties of the vacant set left by random interlacements at levelu. We show that for all d bigger or equal to 3 the vacant set at level upercolates when u is small. This solves an open problem of arXiv:0704.2560,where this fact has only been established when d is bigger or equal to 7. Italso completes the proof of the non-degeneracy in all dimensions d bigger orequal to 3 of the critical parameter introduced in arXiv:0704.2560.



Autor: Vladas Sidoravicius, Alain-Sol Sznitman

Fuente: https://arxiv.org/







Documentos relacionados