Haplotype analysis of sucrose synthase gene family in three SaccharumspeciesReportar como inadecuado




Haplotype analysis of sucrose synthase gene family in three Saccharumspecies - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

BMC Genomics

, 14:314

Plant genomics

Abstract

BackgroundSugarcane is an economically important crop contributing about 80% and 40% to the world sugar and ethanol production, respectively. The complicated genetics consequential to its complex polyploid genome, however, have impeded efforts to improve sugar yield and related important agronomic traits. Modern sugarcane cultivars are complex hybrids derived mainly from crosses among its progenitor species, S. officinarum and S. spontanuem, and to a lesser degree, S. robustom. Atypical of higher plants, sugarcane stores its photoassimilates as sucrose rather than as starch in its parenchymous stalk cells. In the sugar biosynthesis pathway, sucrose synthase SuSy, UDP-glucose: D-fructose 2-a-D-glucosyltransferase, EC 2.4.1.13 is a key enzyme in the regulation of sucrose accumulation and partitioning by catalyzing the reversible conversion of sucrose and UDP into UDP-glucose and fructose. However, little is known about the sugarcane SuSy gene family members and hence no definitive studies have been reported regarding allelic diversity of SuSy gene families in Saccharum species.

ResultsWe identified and characterized a total of five sucrose synthase genes in the three sugarcane progenitor species through gene annotation and PCR haplotype analysis by analyzing 70 to 119 PCR fragments amplified from intron-containing target regions. We detected all but one i.e. ScSuSy5 of ScSuSy transcripts in five tissue types of three Saccharum species. The average SNP frequency was one SNP per 108 bp, 81 bp, and 72 bp in S. officinarum, S. robustom, and S. spontanuem respectively. The average shared SNP is 15 between S. officinarum and S. robustom, 7 between S. officinarum and S. spontanuem , and 11 between S. robustom and S. spontanuem. We identified 27, 35, and 32 haplotypes from the five ScSuSy genes in S. officinarum, S. robustom, and S. spontanuem respectively. Also, 12, 11, and 9 protein sequences were translated from the haplotypes in S. officinarum, S. robustom, S. spontanuem, respectively. Phylogenetic analysis showed three separate clusters composed of SbSuSy1 and SbSuSy2, SbSuSy3 and SbSuSy5, and SbSuSy4.

ConclusionsThe five members of the SuSy gene family evolved before the divergence of the genera in the tribe Andropogoneae at least 12 MYA. Each ScSuSy gene showed at least one non-synonymous substitution in SNP haplotypes. The SNP frequency is the lowest in S. officinarum, intermediate in S. robustum, and the highest in S. spontaneum, which may reflect the timing of the two rounds of whole genome duplication in these octoploids. The higher rate of shared SNP frequency between S. officinarum and S. robustum than between S. officinarum and in S. spontaneum confirmed that the speciation event separating S. officinarum and S. robustum occurred after their common ancestor diverged from S. spontaneum. The SNP and haplotype frequencies in three Saccharum species provide fundamental information for designing strategies to sequence these autopolyploid genomes.

KeywordsSucrose synthase Haplotype Single nucleotide polymorphisms Saccharum officinarum Saccharum spontaneum Saccharum robustum Electronic supplementary materialThe online version of this article doi:10.1186-1471-2164-14-314 contains supplementary material, which is available to authorized users.

Download fulltext PDF



Autor: Jisen Zhang - Jie Arro - Youqiang Chen - Ray Ming

Fuente: https://link.springer.com/



DESCARGAR PDF




Documentos relacionados