DNA transposons have colonized the genome of the giant virus Pandoravirus salinusReportar como inadecuado

DNA transposons have colonized the genome of the giant virus Pandoravirus salinus - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

BMC Biology

, 13:38

First Online: 12 June 2015Received: 27 March 2015Accepted: 03 June 2015DOI: 10.1186-s12915-015-0145-1

Cite this article as: Sun, C., Feschotte, C., Wu, Z. et al. BMC Biol 2015 13: 38. doi:10.1186-s12915-015-0145-1


BackgroundTransposable elements are mobile DNA sequences that are widely distributed in prokaryotic and eukaryotic genomes, where they represent a major force in genome evolution. However, transposable elements have rarely been documented in viruses, and their contribution to viral genome evolution remains largely unexplored. Pandoraviruses are recently described DNA viruses with genome sizes that exceed those of some prokaryotes, rivaling parasitic eukaryotes. These large genomes appear to include substantial noncoding intergenic spaces, which provide potential locations for transposable element insertions. However, no mobile genetic elements have yet been reported in pandoravirus genomes.

ResultsHere, we report a family of miniature inverted-repeat transposable elements MITEs in the Pandoravirus salinus genome, representing the first description of a virus populated with a canonical transposable element family that proliferated by transposition within the viral genome. The MITE family, which we name Submariner, includes 30 copies with all the hallmarks of MITEs: short length, terminal inverted repeats, TA target site duplication, and no coding capacity. Submariner elements show signs of transposition and are undetectable in the genome of Pandoravirus dulcis, the closest known relative Pandoravirus salinus. We identified a DNA transposon related to Submariner in the genome of Acanthamoeba castellanii, a species thought to host pandoraviruses, which contains remnants of coding sequence for a Tc1-mariner transposase. These observations suggest that the Submariner MITEs of P. salinus belong to the widespread Tc1-mariner superfamily and may have been mobilized by an amoebozoan host. Ten of the 30 MITEs in the P. salinus genome are located within coding regions of predicted genes, while others are close to genes, suggesting that these transposons may have contributed to viral genetic novelty.

ConclusionsOur discovery highlights the remarkable ability of DNA transposons to colonize and shape genomes from all domains of life, as well as giant viruses. Our findings continue to blur the division between viral and cellular genomes, adhering to the emerging view that the content, dynamics, and evolution of the genomes of giant viruses do not substantially differ from those of cellular organisms.

KeywordsGenome evolution Miniature inverted-repeat transposable element MITE Virus AbbreviationsISInsertion sequence

MITEMiniature inverted-repeat transposable element

ORFOpen reading frame

TETransposable element

TIRTerminal inverted repeat

TSDTarget site duplication

Electronic supplementary materialThe online version of this article doi:10.1186-s12915-015-0145-1 contains supplementary material, which is available to authorized users.

Download fulltext PDF

Autor: Cheng Sun - Cédric Feschotte - Zhiqiang Wu - Rachel Lockridge Mueller

Fuente: https://link.springer.com/

Documentos relacionados