Deep sequencing, profiling and detailed annotation of microRNAs in Takifugu rubripesReportar como inadecuado

Deep sequencing, profiling and detailed annotation of microRNAs in Takifugu rubripes - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

BMC Genomics

, 16:457

First Online: 16 June 2015Received: 20 July 2014Accepted: 06 May 2015DOI: 10.1186-s12864-015-1622-1

Cite this article as: Wongwarangkana, C., Fujimori, K.E., Akiba, M. et al. BMC Genomics 2015 16: 457. doi:10.1186-s12864-015-1622-1


BackgroundmicroRNAs miRNAs in fish have not been as extensively studied as those in mammals. The fish species Takifugu rubripes is an intensively studied model organism whose genome has been sequenced. The T. rubripes genome is approximately eight times smaller than the human genome, but has a similar repertoire of protein-coding genes. Therefore, it is useful for identifying non-coding genes, including miRNA genes. To identify miRNA expression patterns in different organs of T. rubripes and give fundamental information to aid understanding of miRNA populations in this species, we extracted small RNAs from tissues and performed deep sequencing analysis to profile T. rubripes miRNAs. These data will be of assistance in functional studies of miRNAs in T. rubripes.

ResultsAfter analyzing a total of 139 million reads, we found miRNA species in nine tissues fast and slow muscles, heart, eye, brain, intestine, liver, ovaries, and testes. We identified 1420 known miRNAs, many of which were strongly expressed in certain tissues with expression patterns similar to those described for other animals in previous reports. Most miRNAs were expressed in tissues other than the ovaries or testes. However, some miRNA families were highly abundant in the gonads, but expressed only at low levels in somatic tissue, suggesting specific function in germ cells. The most abundant isomiRs miRNA variants of many miRNAs had identical sequences in the 5′ region. However, isomiRs of some miRNAs, including fru-miR-462-5p, varied in the 5′ region in some tissues, suggesting that they may target different mRNA transcripts. Longer small RNAs 26–31 nt, which were abundant in the gonads, may be putative piRNAs because of their length and their origin from repetitive elements. Additionally, our data include possible novel classes of small RNAs.

ConclusionsWe elucidated miRNA expression patterns in various organs of T. rubripes. Most miRNA sequences are conserved in vertebrates, indicating that the basic functions of vertebrate miRNAs share a common evolution. Some miRNA species exhibit different distributions of isomiRs between tissues, suggesting that they have a broad range of functions.

KeywordsSmall RNA miRNA piRNA T. rubripes Next-generation sequencing miRNA expression profile Transcriptome Electronic supplementary materialThe online version of this article doi:10.1186-s12864-015-1622-1 contains supplementary material, which is available to authorized users.

Download fulltext PDF

Autor: Chaninya Wongwarangkana - Kazuhiro E. Fujimori - Masaki Akiba - Shigeharu Kinoshita - Morimi Teruya - Maiko Nezuo - Tsukaha


Documentos relacionados