Predicting Wolbachia invasion dynamics in Aedes aegypti populations using models of density-dependent demographic traitsReportar como inadecuado

Predicting Wolbachia invasion dynamics in Aedes aegypti populations using models of density-dependent demographic traits - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

BMC Biology

, 14:96

First Online: 08 November 2016Received: 19 July 2016Accepted: 19 October 2016DOI: 10.1186-s12915-016-0319-5

Cite this article as: Hancock, P.A., White, V.L., Ritchie, S.A. et al. BMC Biol 2016 14: 96. doi:10.1186-s12915-016-0319-5


BackgroundArbovirus transmission by the mosquito Aedes aegypti can be reduced by the introduction and establishment of the endosymbiotic bacteria Wolbachia in wild populations of the vector. Wolbachia spreads by increasing the fitness of its hosts relative to uninfected mosquitoes. However, mosquito fitness is also strongly affected by population size through density-dependent competition for limited food resources. We do not understand how this natural variation in fitness affects symbiont spread, which limits our ability to design successful control strategies.

ResultsWe develop a mathematical model to predict A. aegypti–Wolbachia dynamics that incorporates larval density-dependent variation in important fitness components of infected and uninfected mosquitoes. Our model explains detailed features of the mosquito–Wolbachia dynamics observed in two independent experimental A. aegypti populations, allowing the combined effects on dynamics of multiple density-dependent fitness components to be characterized. We apply our model to investigate Wolbachia field release dynamics, and show how invasion outcomes can depend strongly on the severity of density-dependent competition at the release site. Specifically, the ratio of released relative to wild mosquitoes required to attain a target infection frequency at the end of a release program can vary by nearly an order of magnitude. The time taken for Wolbachia to become established following releases can differ by over 2 years. These effects depend on the relative fitness of field and insectary-reared mosquitoes.

ConclusionsModels of Wolbachia invasion incorporating density-dependent demographic variation in the host population explain observed dynamics in experimental A. aegypti populations. These models predict strong effects of density-dependence on Wolbachia dynamics in field populations, and can assist in the effective use of Wolbachia to control the transmission of arboviruses such as dengue, chikungunya and zika.

KeywordsWolbachia Zika Dengue Mosquito Aedes aegypti Density-dependence Bayesian statistical model Invasion Vector-borne disease Fitness Electronic supplementary materialThe online version of this article doi:10.1186-s12915-016-0319-5 contains supplementary material, which is available to authorized users.

Download fulltext PDF

Autor: Penelope A. Hancock - Vanessa L. White - Scott A. Ritchie - Ary A. Hoffmann - H. Charles J. Godfray


Documentos relacionados