Pre-treatment of Ultramafic Nickel Ores for Improved Mineral Carbon SequestrationReportar como inadecuado

Pre-treatment of Ultramafic Nickel Ores for Improved Mineral Carbon Sequestration - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

mineralogy, mineral processing, mineral carbon sequestration, comminution, serpentine, rheology, ultramafic nickel, ligands, leaching, microwave pre-treatment

Bobicki, Erin R.

Supervisor and department: Xu, Zhenghe Chemical and Materials Engineering Liu, Qingxia Chemical and Materials Engineering

Examining committee member and department: Zhang, Xuehua Chemical and Biomolecular Engineering, University of Melbourne Liu, Qi Chemical and Materials Engineering, University of Alberta Gupta, Raj Chemical and Materials Engineering, University of Alberta

Department: Department of Chemical and Materials Engineering

Specialization: Chemical Engineering

Date accepted: 2014-06-25T09:37:01Z

Graduation date: 2014-11

Degree: Doctor of Philosophy

Degree level: Doctoral

Abstract: Mineral carbon sequestration MCS is a type of carbon storage based on natural rock weathering processes where CO2, dissolved in rainwater, reacts with alkaline minerals to form solid carbonates. Although MCS has advantages over other carbon storage techniques, an economic MCS process has not yet been developed. Two approaches were taken in this work to reduce the cost of MCS. The first approach was to use a waste material, serpentine waste from ultramafic nickel ore processing, as a feedstock. The second approach was to use pre-treatments to increase the carbon storage capacity of the waste material. Two pre-treatments were developed in this work. The first pre-treatment, microwave pre-treatment, was identified as a way not only to improve the carbon sequestration capacity of the waste, but also to improve the mineral processing of ultramafic nickel ores. Microwave pre-treatment was shown to successfully convert serpentine in ultramafic nickel ores to olivine, to improve the grindability of ultramafic nickel ores with consistent texture, to reduce the viscosity of ultramafic nickel ore slurries by an average of 80%, and to enhance the CO2 storage capacity of ultramafic nickel ores by a factor of up to 5. The second pre-treatment developed was leaching with ligands at neutral to alkaline pH. Catechol, EDTA and tiron were shown to greatly improve the leaching rate and total magnesium leached from ultramafic nickel ores. While EDTA proved to be too strong of a ligand to allow the precipitation of MgCO3 from solution, catechol and tiron promoted the formation of MgCO3, particularly at pH 10. Overall, tiron was the most effective ligand for enhancing MCS and increased the CO2 storage capacity of ultramafic nickel ores by a factor of up to 3. Although the pre-treatment techniques developed required optimization, both microwave pre-treatment and leaching with ligands at neutral to alkaline pH show promise for ultimately reducing the cost of MCS.

Language: English

DOI: doi:10.7939-R3TB0Z23P

Rights: Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.

Autor: Bobicki, Erin R.



Documentos relacionados