Mini-clusters with mean probabilities for identifying effective siRNAsReport as inadecuate

Mini-clusters with mean probabilities for identifying effective siRNAs - Download this document for free, or read online. Document in PDF available to download.

BMC Research Notes

, 5:512

First Online: 18 September 2012Received: 28 October 2011Accepted: 07 August 2012DOI: 10.1186-1756-0500-5-512

Cite this article as: Xingang, J., Lu, Z. & Han, Q. BMC Res Notes 2012 5: 512. doi:10.1186-1756-0500-5-512


BackgroundThe distinction between the effective siRNAs and the ineffective ones is in high demand for gene knockout technology. To design effective siRNAs, many approaches have been proposed. Those approaches attempt to classify the siRNAs into effective and ineffective classes but they are difficult to decide the boundary between these two classes.

FindingsHere, we try to split effective and ineffective siRNAs into many smaller subclasses by RMP-MiCthe relative mean probabilities of siRNAs with the mini-clusters algorithm. The relative mean probabilities of siRNAs are the modified arithmetic mean value of three probabilities, which come from three Markov chain of effective siRNAs. The mini-clusters algorithm is a modified version of micro-cluster algorithm.

ConclusionsWhen the RMP-MiC was applied to the experimental siRNAs, the result shows that all effective siRNAs can be identified correctly, and no more than 9% ineffective siRNAs are misidentified as effective ones. We observed that the efficiency of those misidentified ineffective siRNAs exceed 70%, which is very closed to the used efficiency threshold. From the analysis of the siRNAs data, we suggest that the mini-clusters algorithm with relative mean probabilities can provide new insights to the applications for distinguishing effective siRNAs from ineffective ones.

Download fulltext PDF

Author: Jia Xingang - Zuhong Lu - Qiuhong Han


Related documents