Initial Stage of Consolidation of Silicon-Carbide Nanocrystals under Pressure: A Tight-Binding Molecular-Dynamics StudyReport as inadecuate




Initial Stage of Consolidation of Silicon-Carbide Nanocrystals under Pressure: A Tight-Binding Molecular-Dynamics Study - Download this document for free, or read online. Document in PDF available to download.

Journal of NanomaterialsVolume 2011 2011, Article ID 308495, 6 pages

Research ArticleThe Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530, Japan

Received 27 May 2010; Accepted 6 July 2010

Academic Editor: Bo Zou

Copyright © 2011 Kenji Tsuruta. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Tight-binding molecular-dynamics TBMDs simulations are performed to study atomic and electronic structures during high-temperature consolidation processes of nanocrystalline silicon carbide under external pressure. We employ a linear-scaling method the Fermi-operator expansion method with a scalable parallel algorithm for efficient calculations of the long time-scale phenomena. The results show that microscopic processes of the consolidation depend strongly on initial orientations of the nanocrystals. It is observed that an orientational rearrangement of the nanocrystals initially misaligned is induced by an instantaneous shearing force between nanocrystals, whereas the aligned system undergoes densification without shearing. Analysis on an effective-charge distribution and an average bond-order distribution reveals electronic-structure evolutions during these processes.





Author: Kenji Tsuruta

Source: https://www.hindawi.com/



DOWNLOAD PDF




Related documents