Statistical tests, P values, confidence intervals, and power: a guide to misinterpretationsReportar como inadecuado




Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

European Journal of Epidemiology

, Volume 31, Issue 4, pp 337–350

First Online: 21 May 2016Received: 09 April 2016Accepted: 09 April 2016DOI: 10.1007-s10654-016-0149-3

Cite this article as: Greenland, S., Senn, S.J., Rothman, K.J. et al. Eur J Epidemiol 2016 31: 337. doi:10.1007-s10654-016-0149-3

Abstract

Misinterpretation and abuse of statistical tests, confidence intervals, and statistical power have been decried for decades, yet remain rampant. A key problem is that there are no interpretations of these concepts that are at once simple, intuitive, correct, and foolproof. Instead, correct use and interpretation of these statistics requires an attention to detail which seems to tax the patience of working scientists. This high cognitive demand has led to an epidemic of shortcut definitions and interpretations that are simply wrong, sometimes disastrously so—and yet these misinterpretations dominate much of the scientific literature. In light of this problem, we provide definitions and a discussion of basic statistics that are more general and critical than typically found in traditional introductory expositions. Our goal is to provide a resource for instructors, researchers, and consumers of statistics whose knowledge of statistical theory and technique may be limited but who wish to avoid and spot misinterpretations. We emphasize how violation of often unstated analysis protocols such as selecting analyses for presentation based on the P values they produce can lead to small P values even if the declared test hypothesis is correct, and can lead to large P values even if that hypothesis is incorrect. We then provide an explanatory list of 25 misinterpretations of P values, confidence intervals, and power. We conclude with guidelines for improving statistical interpretation and reporting.

KeywordsConfidence intervals Hypothesis testing Null testing P value Power Significance tests Statistical testing Editor’s noteThis article has been published online as supplementary material with an article of Wasserstein RL, Lazar NA. The ASA’s statement on p-values: context, process and purpose. The American Statistician 2016.

Albert Hofman, Editor-in-Chief EJE.

Download fulltext PDF



Autor: Sander Greenland - Stephen J. Senn - Kenneth J. Rothman - John B. Carlin - Charles Poole - Steven N. Goodman - Douglas 

Fuente: https://link.springer.com/







Documentos relacionados