Using autoregressive integrated moving average ARIMA models to predict and monitor the number of beds occupied during a SARS outbreak in a tertiary hospital in SingaporeReportar como inadecuado




Using autoregressive integrated moving average ARIMA models to predict and monitor the number of beds occupied during a SARS outbreak in a tertiary hospital in Singapore - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

BMC Health Services Research

, 5:36

First Online: 11 May 2005Received: 15 October 2004Accepted: 11 May 2005DOI: 10.1186-1472-6963-5-36

Cite this article as: Earnest, A., Chen, M.I., Ng, D. et al. BMC Health Serv Res 2005 5: 36. doi:10.1186-1472-6963-5-36

Abstract

BackgroundThe main objective of this study is to apply autoregressive integrated moving average ARIMA models to make real-time predictions on the number of beds occupied in Tan Tock Seng Hospital, during the recent SARS outbreak.

MethodsThis is a retrospective study design. Hospital admission and occupancy data for isolation beds was collected from Tan Tock Seng hospital for the period 14 March 2003 to 31 May 2003. The main outcome measure was daily number of isolation beds occupied by SARS patients. Among the covariates considered were daily number of people screened, daily number of people admitted including observation, suspect and probable cases and days from the most recent significant event discovery. We utilized the following strategy for the analysis. Firstly, we split the outbreak data into two. Data from 14 March to 21 April 2003 was used for model development. We used structural ARIMA models in an attempt to model the number of beds occupied. Estimation is via the maximum likelihood method using the Kalman filter. For the ARIMA model parameters, we considered the simplest parsimonious lowest order model.

ResultsWe found that the ARIMA 1,0,3 model was able to describe and predict the number of beds occupied during the SARS outbreak well. The mean absolute percentage error MAPE for the training set and validation set were 5.7% and 8.6% respectively, which we found was reasonable for use in the hospital setting. Furthermore, the model also provided three-day forecasts of the number of beds required. Total number of admissions and probable cases admitted on the previous day were also found to be independent prognostic factors of bed occupancy.

ConclusionARIMA models provide useful tools for administrators and clinicians in planning for real-time bed capacity during an outbreak of an infectious disease such as SARS. The model could well be used in planning for bed-capacity during outbreaks of other infectious diseases as well.

Electronic supplementary materialThe online version of this article doi:10.1186-1472-6963-5-36 contains supplementary material, which is available to authorized users.

Arul Earnest, Mark I Chen, Donald Ng and Leo Yee Sin contributed equally to this work.

Download fulltext PDF



Autor: Arul Earnest - Mark I Chen - Donald Ng - Leo Yee Sin

Fuente: https://link.springer.com/







Documentos relacionados