Derivation of asymptotic two-dimensional time-dependent equations for ocean wave propagationReport as inadecuate

Derivation of asymptotic two-dimensional time-dependent equations for ocean wave propagation - Download this document for free, or read online. Document in PDF available to download.

1 IMB - Institut de Mathématiques de Bordeaux 2 EPOC - Environnements et Paléoenvironnements OCéaniques

Abstract : A general method for the derivation of asymptotic nonlinear shallow water and deep water models is presented. Starting from a general dimensionless version of the water-wave equations, we reduce the problem to a system of two equations on the surface elevation and the velocity potential at the free surface. These equations involve a Dirichlet-Neumann operator and we show that all the asymptotic models can be recovered by a simple asymptotic expansion of this operator, in function of the shallowness parameter shallow water limit or the steepness parameter deep water limit. Based on this method, a new two-dimensional fully dispersive model for small wave steepness is also derived, which extends to uneven bottom the approach developed by Matsuno \cite{matsuno3} and Choi \cite{choi}. This model is still valid in shallow water but with less precision than what can be achieved with Green-Naghdi model, when fully nonlinear waves are considered. The combination, or the coupling, of the new fully dispersive equations with the fully nonlinear shallow water Green-Naghdi equations represents a relevant model for describing ocean wave propagation from deep to shallow waters.

Author: David Lannes - Philippe Bonneton -



Related documents