Integrality Gap of the Hypergraphic Relaxation of Steiner Trees: a short proof of a 1.55 upper bound - Computer Science > Discrete MathematicsReportar como inadecuado




Integrality Gap of the Hypergraphic Relaxation of Steiner Trees: a short proof of a 1.55 upper bound - Computer Science > Discrete Mathematics - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Abstract: Recently Byrka, Grandoni, Rothvoss and Sanita at STOC 2010 gave a1.39-approximation for the Steiner tree problem, using a hypergraph-basedlinear programming relaxation. They also upper-bounded its integrality gap by1.55. We describe a shorter proof of the same integrality gap bound, byapplying some of their techniques to a randomized loss-contracting algorithm.



Autor: Deeparnab Chakrabarty, Jochen Koenemann, David Pritchard

Fuente: https://arxiv.org/







Documentos relacionados