Schur^2-concavity properties of Gaussian measures, with applications to hypotheses testing - Mathematics > ProbabilityReportar como inadecuado




Schur^2-concavity properties of Gaussian measures, with applications to hypotheses testing - Mathematics > Probability - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Abstract: The main results imply that the probability P\ZZ\in A+\th isSchur-concave-Schur-convex in \th 1^2,\dots,\th k^2 provided that theindicator function of a set A in \R^k is so, respectively; here,\th=\th 1,\dots,\th k in \R^k and \ZZ is a standard normal random vector in\R^k. Moreover, it is shown that the Schur-concavity-Schur-convexity is strictunless the set A is equivalent to a spherically symmetric set. Applications totesting hypotheses on multivariate means are given.



Autor: Iosif Pinelis

Fuente: https://arxiv.org/



DESCARGAR PDF




Documentos relacionados