On the Unboundedness of the First Eigenvalue of the Laplacian for G-Invariant Metrics - Mathematics > Differential GeometryReportar como inadecuado




On the Unboundedness of the First Eigenvalue of the Laplacian for G-Invariant Metrics - Mathematics > Differential Geometry - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Abstract: In this note we partially answer a question posed by Colbois, Dryden, and ElSoufi. Consider the space of constant-volume Riemannian metrics on a connectedmanifold M which are invariant under the action of a discrete Lie group G. Weshow that the first eigenvalue of the Laplacian is not bounded above on thisspace, provided M = S^n, G acts freely, and S^n-G with the round metric admitsa Killing vector field of constant length, or provided M is a compact Lie groupnot equal to T^n, and G is a discrete subgroup of M.



Autor: Paul Cernea

Fuente: https://arxiv.org/







Documentos relacionados