Attainability by simply connected domains of optimal bounds for the polarization tensorReportar como inadecuado




Attainability by simply connected domains of optimal bounds for the polarization tensor - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Reference: Ammari, H, Capdeboscq, Y, Kang, H et al., (2006). Attainability by simply connected domains of optimal bounds for the polarization tensor. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 17 (2), 201-219.Citable link to this page:

 

Attainability by simply connected domains of optimal bounds for the polarization tensor

Abstract: The notion of polarization tensor is employed for the derivation of the leading-order boundary perturbations in the steady-state voltage potentials that are due to the presence of conductivity inclusions of small diameter. Recently, Capdeboscq and Vogelius obtained optimal bounds of Hashin-Shtrikman type for the trace of the polarization tensor, showing that every pair satisfying these optimal bounds arises as the eigenvalues of a polarization tensor associated with a coated ellipse. In this paper, we give numerical evidence of the fact that the set of possible polarization tensor eigenvalue pairs can also be obtained using simply connected domains. Our numerical computations are based on a boundary integral method. Copyright 2006 Cambridge University Press.

Peer Review status:Peer reviewedPublication status:PublishedVersion:Publisher's version Funder: Korea Science and Engineering Foundation   Notes:Copyright 2006 Cambridge University Press

Bibliographic Details

Publisher: Cambridge University Press

Publisher Website: http://www.cambridge.org/

Journal: EUROPEAN JOURNAL OF APPLIED MATHEMATICSsee more from them

Publication Website: http://journals.cambridge.org/action/displayJournal?jid=EJM

Issue Date: 2006

pages:201-219Identifiers

Urn: uuid:dd260ad7-df6d-4e02-b689-bb8f94178dbf

Source identifier: 18559

Eissn: 1469-4425

Doi: https://doi.org/10.1017/S0956792506006541

Issn: 0956-7925 Item Description

Type: Journal article;

Version: Publisher's version Tiny URL: pubs:18559

Relationships





Autor: Ammari, H - - - Capdeboscq, Y - institutionUniversity of Oxford Oxford, MPLS, Mathematical Institute - - - Kang, H - institutionS

Fuente: https://ora.ox.ac.uk/objects/uuid:dd260ad7-df6d-4e02-b689-bb8f94178dbf



DESCARGAR PDF




Documentos relacionados