Centripetal operators and Koszmider spacesReportar como inadecuado

Centripetal operators and Koszmider spaces - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Reference: Irina Schlackow, (2008-June). Centripetal operators and Koszmider spaces. Topology and its Applications, 155 (11), 1227–1236.Citable link to this page:


Centripetal operators and Koszmider spaces

Abstract: We study properties of Koszmider spaces and introduce a related notion of weakly Koszmider spaces. We show that if the space K is weakly Koszmider and C(K) is isomorphic to C(L) then L is also weakly Koszmider, but the analogous result does not hold for Koszmider spaces. We also show that a connected Koszmider space is strongly rigid.

Publication status:PublishedPeer Review status:Peer reviewedVersion:Publisher's versionNotes:Copyright 2008 Elsevier B.V. All rights reserved. Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://www.elsevier.com/open-access/userlicense/1.0/

Bibliographic Details

Publisher: Elsevier Inc.

Publisher Website: http://www.elsevier.com/

Host: Topology and its Applicationssee more from them

Publication Website: http://www.journals.elsevier.com/topology-and-its-applications/

Issue Date: 2008-June

Copyright Date: 2008

pages: 1227–1236Identifiers

Doi: https://doi.org/10.1016/j.topol.2008.03.004

Issn: 0166-8641

Urn: uuid:eebd2c4e-3e21-4661-aa9d-178bc4b1ddf7 Item Description

Type: Article: post-print;

Language: en

Version: Publisher's versionKeywords: centripetal operators Koszmider spaces weakly KoszmiderSubjects: Mathematics Tiny URL: ora:10780


Autor: Irina Schlackow - institutionUniversity of Oxford facultyMathematical,Physical and Life Sciences Division - Mathematical Institut

Fuente: https://ora.ox.ac.uk/objects/uuid:eebd2c4e-3e21-4661-aa9d-178bc4b1ddf7


Documentos relacionados