On the Correlations, Selberg Integral and Symmetry of Sieve Functions in Short Intervals, III - Mathematics > Number TheoryReportar como inadecuado




On the Correlations, Selberg Integral and Symmetry of Sieve Functions in Short Intervals, III - Mathematics > Number Theory - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Abstract: An arithmetic function $f$ is called a sieve function of range $Q$, if it isthe convolution product of the constantly $1$ function and $g$ such that$gq\ll {\varepsilon} q^{\varepsilon}$, $\forall\varepsilon>0$, for $q\leq Q$,and $gq=0$ for $q>Q$. Here we establish a new result on the autocorrelationof $f$ by using a famous theorem on bilinear forms of Kloosterman fractions byDuke, Friedlander and Iwaniec. In particular, for such correlations we obtainnon-trivial asymptotic formul\ae\ that are actually unreachable by the standardapproach of the distribution of $f$ in the arithmetic progressions. Moreover,we apply our asymptotic formul\ae\ to obtain new bounds for the so-calledSelberg integral and symmetry integral of $f$, which are basic tools for thestudy of the distribution of $f$ in short intervals.



Autor: Giovanni Coppola, Maurizio Laporta

Fuente: https://arxiv.org/







Documentos relacionados