Human fetal neuroblast and neuroblastoma transcriptome analysis confirms neuroblast origin and highlights neuroblastoma candidate genesReportar como inadecuado




Human fetal neuroblast and neuroblastoma transcriptome analysis confirms neuroblast origin and highlights neuroblastoma candidate genes - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

(2006)GENOME BIOLOGY.7(9). Mark abstract Background: Neuroblastoma tumor cells are assumed to originate from primitive neuroblasts giving rise to the sympathetic nervous system. Because these precursor cells are not detectable in postnatal life, their transcription profile has remained inaccessible for comparative data mining strategies in neuroblastoma. This study provides the first genome-wide mRNA expression profile of these human fetal sympathetic neuroblasts. To this purpose, small islets of normal neuroblasts were isolated by laser microdissection from human fetal adrenal glands. Results: Expression of catecholamine metabolism genes, and neuronal and neuroendocrine markers in the neuroblasts indicated that the proper cells were microdissected. The similarities in expression profile between normal neuroblasts and malignant neuroblastomas provided strong evidence for the neuroblast origin hypothesis of neuroblastoma. Next, supervised feature selection was used to identify the genes that are differentially expressed in normal neuroblasts versus neuroblastoma tumors. This approach efficiently sifted out genes previously reported in neuroblastoma expression profiling studies; most importantly, it also highlighted a series of genes and pathways previously not mentioned in neuroblastoma biology but that were assumed to be involved in neuroblastoma pathogenesis. Conclusion: This unique dataset adds power to ongoing and future gene expression studies in neuroblastoma and will facilitate the identification of molecular targets for novel therapies. In addition, this neuroblast transcriptome resource could prove useful for the further study of human sympathoadrenal biogenesis.

Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-369949



Autor: Katleen De Preter , Jo Vandesompele , Pierre Heimann, Nurten Yigit , Siv Beckman, Alexander Schramm, Angelika Eggert, Raymond L St

Fuente: https://biblio.ugent.be/publication/369949



DESCARGAR PDF




Documentos relacionados