Generalized Ehrhart polynomials - Mathematics > CombinatoricsReportar como inadecuado

Generalized Ehrhart polynomials - Mathematics > Combinatorics - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Abstract: Let $P$ be a polytope with rational vertices. A classical theorem of Ehrhartstates that the number of lattice points in the dilations $Pn = nP$ is aquasi-polynomial in $n$. We generalize this theorem by allowing the vertices ofPn to be arbitrary rational functions in $n$. In this case we prove that thenumber of lattice points in Pn is a quasi-polynomial for $n$ sufficientlylarge. Our work was motivated by a conjecture of Ehrhart on the number ofsolutions to parametrized linear Diophantine equations whose coefficients arepolynomials in $n$, and we explain how these two problems are related.

Autor: Sheng Chen, Nan Li, Steven V Sam


Documentos relacionados