Clustering of exponentially separating trajectories - Nonlinear Sciences > Chaotic DynamicsReportar como inadecuado




Clustering of exponentially separating trajectories - Nonlinear Sciences > Chaotic Dynamics - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Abstract: It might be expected that trajectories for a dynamical system which has nonegative Lyapunov exponent implying exponential growth of small separationswill not cluster together. However, clustering can occur such that the density$ ho\Delta x$ of trajectories within distance $\Delta x$ of a referencetrajectory has a power-law divergence, so that $ ho\Delta x\sim \Deltax^{-\beta}$ when $\Delta x$ is sufficiently small, for some $0<\beta<1$. Wedemonstrate this effect using a random map in one dimension. We find noevidence for this effect in the chaotic logistic map, and argue that the effectis harder to observe in deterministic maps.



Autor: M. Wilkinson, B. Mehlig, K. Gustavsson, E. Werner

Fuente: https://arxiv.org/



DESCARGAR PDF




Documentos relacionados