Estimating missing data in historic series of global radiation through neural network algorithms Reportar como inadecuado




Estimating missing data in historic series of global radiation through neural network algorithms - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Alejandro Vásquez Vega ; Franklin García Acevedo ; Diego Parra Peñaranda ; Erney Castro Becerra ;Sistemas & Telemática 2016, 14 37

Autor: Juan Rojas Serrano

Fuente: http://www.redalyc.org/articulo.oa?id=411546577001


Introducción



Sistemas & Telemática ISSN: 1692-5238 EditorSyT@icesi.edu.co Universidad ICESI Colombia Rojas Serrano, Juan; Vásquez Vega, Alejandro; García Acevedo, Franklin; Parra Peñaranda, Diego; Castro Becerra, Erney Estimating missing data in historic series of global radiation through neural network algorithms Sistemas & Telemática, vol.
14, núm.
37, 2016, pp.
9-22 Universidad ICESI Cali, Colombia Available in: http:--www.redalyc.org-articulo.oa?id=411546577001 How to cite Complete issue More information about this article Journals homepage in redalyc.org Scientific Information System Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Non-profit academic project, developed under the open access initiative Rojas, J., Vásquez, A., García, F., Parra, D., & Castro, E.
(2016).
Estimating missing data in historic series of global radiation through neural network algorithms.
Sistemas & Telemática, 14(37), 9-22 Original research - Artículo original - Tipo 1 Estimating missing data in historic series of global radiation through neural network algorithms Juan Rojas Serrano - juanandresrs@ufps.edu.co Alejandro Vásquez Vega - darioalejandrovv@ufps.edu.co Franklin García Acevedo - franklinmeerga@ufps.edu.co Diego Parra Peñaranda - diegoalejandropp@ufps.edu.co Erney Castro Becerra - erneyfabiancb@ufps.edu.co Universidad Francisco de Paula Santander, Cúcuta-Colombia ABSTRACT Managing meteorological data is usual to find incomplete data of time series in some intervals; the issue is addresses commonly using the autoregressive integrated moving average (ARIMA) or the method by regression analysis (interpolation), both with certain limitations under particular conditions.
This paper presents the results of an investigation aimed at solving the problem using neural networks reported.
The analysis of a time series of global radiation obtained at the Francisco de Paula Santander University (UFPS) is presented, with basis in the recorded d...





Documentos relacionados