Critical heights on the moduli space of polynomials - Mathematics > Dynamical SystemsReportar como inadecuado




Critical heights on the moduli space of polynomials - Mathematics > Dynamical Systems - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Abstract: Let $M d$ be the moduli space of one-dimensional complex polynomial dynamicalsystems. The escape rates of the critical points determine a critical heightsmap $G: M d \to \mathbb{R}^{d-1}$. For generic values of $G$, each connectedcomponent of a fiber of $G$ is the deformation space for twist deformations onthe basin of infinity. We analyze the quotient space $\mathcal{T} d^*$ obtainedby collapsing each connected component of a fiber of $G$ to a point. The space$\mathcal{T} d^*$ is a parameter-space analog of the polynomial tree $Tf$associated to a polynomial $f:\mathbb{C}\to\mathbb{C}$, studied by DeMarco andMcMullen, and there is a natural projection from $\mathcal{T} d^*$ to the spaceof trees $\mathcal{T} d$. We show that the projectivization$\mathbb{P}\mathcal{T} d^*$ is compact and contractible; further, the shiftlocus in $\mathbb{P}\mathcal{T} d^*$ has a canonical locally finite simplicialstructure. The top-dimensional simplices are in one-to-one corespondence withtopological conjugacy classes of structurally stable polynomials in the shiftlocus.



Autor: Laura DeMarco, Kevin Pilgrim

Fuente: https://arxiv.org/







Documentos relacionados