Topological semigroups of matrix units and countably compact Brandt $λ^0$-extensions of topological semigroups - Mathematics > Group TheoryReportar como inadecuado




Topological semigroups of matrix units and countably compact Brandt $λ^0$-extensions of topological semigroups - Mathematics > Group Theory - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Abstract: We show that a topological semigroup of finite partial bijections$\mathscr{I} \lambda^n$ of an infinite set with a compact subsemigroup ofidempotents is absolutely $H$-closed and any countably compact topologicalsemigroup does not contain $\mathscr{I} \lambda^n$ as a subsemigroup. We givesufficient conditions onto a topological semigroup $\mathscr{I} \lambda^1$ tobe non-$H$-closed. Also we describe the structure of countably compact Brandt$\lambda^0$-extensions of topological monoids and study the category ofcountably compact Brandt $\lambda^0$-extensions of topological monoids withzero.



Autor: Oleg Gutik, Kateryna Pavlyk, Andriy Reiter

Fuente: https://arxiv.org/







Documentos relacionados