Interaction of primary mast cells with Borrelia burgdorferi sensu stricto: role in transmission and dissemination in C57BL-6 miceReportar como inadecuado

Interaction of primary mast cells with Borrelia burgdorferi sensu stricto: role in transmission and dissemination in C57BL-6 mice - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Parasites and Vectors

, 10:313

First Online: 27 June 2017Received: 17 October 2016Accepted: 12 June 2017


BackgroundBorrelia burgdorferi sensulato, the causative agent of Lyme borreliosis is a bacterium transmitted by hard ticks, Ixodes spp. Bacteria are injected into the host skin during the tick blood meal with tick saliva. There, Borrelia and saliva interact together with skin cells such as keratinocytes, fibroblasts, mast cells and other specific immune cells before disseminating to target organs.

MethodsTo study the role of mast cells in the transmission of Lyme borreliosis, we isolated mouse primary mast cells from bone marrow and incubated them in the presence of Borrelia burgdorferi sensu stricto and tick salivary gland extract. We further analyzed their potential role in vivo, in a mouse model of deficient in mast cells Kit mice.

ResultsTo our knowledge, we report here for the first time the bacteria ability to induce the inflammatory response of mouse primary mast cells. We show that OspC, a major surface lipoprotein involved in the early transmission of Borrelia, induces the degranulation of primary mast cells but has a limited effect on the overall inflammatory response of these cells. In contrast, whole bacteria have an opposite effect. We also show that mast cell activation is significantly inhibited by tick salivary gland extract. Finally, we demonstrate that mast cells are likely not the only host cells involved in the early transmission and dissemination of Borrelia since the use of mast cell deficient Kit mice shows a limited impact on these two processes in the context of this mouse genetic background.

ConclusionsThe absence of mast cells did not change the replication rate of Borrelia in the skin. However, in the absence of mast cells, Borrelia dissemination to the joints was faster. Mast cells do not control skin bacterial proliferation during primary infection and the establishment of the primary infection, as shown in the C57BL-6 mouse model studied. Nevertheless, the Borrelia induced cytotokine modulation on mast cells might be involved in long term and-or repeated infections and protect from Lyme borreliosis due to the development of a hypersensitivity to tick saliva.

KeywordsMast cells Borrelia Ixodes tick Pathogen transmission Kit mouse Tick saliva AbbreviationsELISAEnzyme-linked immunsorbent assay


MCMast cell

NEAANon-essential amino acid

OIMultiplicity of infection

OspsOuter surface proteins

PampPathogen-associated molecular pattern

PRRPattern recognition receptor

qPCRQuantitative polymerase chain reaction

SCFStem cell factor

SGESalivary gland extract

TLRToll-like receptor

Electronic supplementary materialThe online version of this article doi:10.1186-s13071-017-2243-0 contains supplementary material, which is available to authorized users.

Download fulltext PDF

Autor: Quentin Bernard - Zhenping Wang - Anna Di Nardo - Nathalie Boulanger


Documentos relacionados