Online but Accurate Inference for Latent Variable Models with Local Gibbs SamplingReportar como inadecuado

Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

1 Technicolor R & I Cesson Sévigné 2 SIERRA - Statistical Machine Learning and Parsimony DI-ENS - Département d-informatique de l-École normale supérieure, ENS Paris - École normale supérieure - Paris, CNRS - Centre National de la Recherche Scientifique, Inria de Paris 3 LIENS - Laboratoire d-informatique de l-école normale supérieure

Abstract : We study parameter inference in large-scale latent variable models. We first propose an unified treatment of online inference for latent variable models from a non-canonical exponential family, and draw explicit links between several previously proposed frequentist or Bayesian methods. We then propose a novel inference method for the frequentist estimation of parameters, that adapts MCMC methods to online inference of latent variable models with the proper use of local Gibbs sampling. Then, for latent Dirich-let allocation,we provide an extensive set of experiments and comparisons with existing work, where our new approach outperforms all previously proposed methods. In particular, using Gibbs sampling for latent variable inference is superior to variational inference in terms of test log-likelihoods. Moreover, Bayesian inference through variational methods perform poorly, sometimes leading to worse fits with latent variables of higher dimensionality.

Keywords : online learning Gibbs sampling topic modelling latent variable models

Autor: Christophe Dupuy - Francis Bach -



Documentos relacionados