Asymptotics and congruences for partition functions which arise from finitary permutation groupsReportar como inadecuado




Asymptotics and congruences for partition functions which arise from finitary permutation groups - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Research in Number Theory

, 2:20

First Online: 12 December 2016Received: 30 June 2016Accepted: 22 July 2016

Abstract

In a recent paper, Bacher and de la Harpe study the conjugacy growth series of finitary permutation groups. In the course of studying the coefficients of a series related to the finitary alternating group, they introduce generalized partition functions \pn \mathbf{e }\. The group theory motivates the study of the asymptotics for these functions. Moreover, Bacher and de la Harpe also conjecture over 200 congruences for these functions which are analogous to the Ramanujan congruences for the unrestricted partition function pn. We obtain asymptotic formulas for all of the \pn \mathbf{e }\ and prove their conjectured congruences.

KeywordsPartitions Finitary permutation groups Ramanujan congruences Mathematics Subject Classification11P82 11P83  Download fulltext PDF



Autor: Tessa Cotron - Robert Dicks - Sarah Fleming

Fuente: https://link.springer.com/







Documentos relacionados