Classifying birationally commutative projective surfaces - Mathematics > Rings and AlgebrasReportar como inadecuado




Classifying birationally commutative projective surfaces - Mathematics > Rings and Algebras - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Abstract: Let R be a noetherian connected graded domain of Gelfand-Kirillov dimension 3over an uncountable algebraically closed field. Suppose that the gradedquotient ring of R is a skew-Laurent ring over a field; we say that R is abirationally commutative projective surface. We classify birationallycommutative projective surfaces and show that they fall into four families,parameterized by geometric data. This generalizes work of Rogalski and Staffordon birationally commutative projective surfaces generated in degree 1; ourproof techniques are quite different.



Autor: Susan J. Sierra

Fuente: https://arxiv.org/



DESCARGAR PDF




Documentos relacionados