BicPAM: Pattern-based biclustering for biomedical data analysisReportar como inadecuado

BicPAM: Pattern-based biclustering for biomedical data analysis - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

Algorithms for Molecular Biology

, 9:27

First Online: 16 December 2014Received: 18 January 2014Accepted: 12 November 2014


BackgroundBiclustering, the discovery of sets of objects with a coherent pattern across a subset of conditions, is a critical task to study a wide-set of biomedical problems, where molecular units or patients are meaningfully related with a set of properties. The challenging combinatorial nature of this task led to the development of approaches with restrictions on the allowed type, number and quality of biclusters. Contrasting, recent biclustering approaches relying on pattern mining methods can exhaustively discover flexible structures of robust biclusters. However, these approaches are only prepared to discover constant biclusters and their underlying contributions remain dispersed.

MethodsThe proposed BicPAM biclustering approach integrates existing principles made available by state-of-the-art pattern-based approaches with two new contributions. First, BicPAM is the first efficient attempt to exhaustively mine non-constant types of biclusters, including additive and multiplicative coherencies in the presence or absence of symmetries. Second, BicPAM provides strategies to effectively compose different biclustering structures and to handle arbitrary levels of noise inherent to data and with discretization procedures.

ResultsResults show BicPAM’s superiority against its peers and its ability to retrieve unique types of biclusters of interest, to efficiently deliver exhaustive solutions and to successfully recover planted biclusters in datasets with varying levels of missing values and noise. Its application over gene expression data leads to unique solutions with heightened biological relevance.

ConclusionsBicPAM approaches integrate existing disperse efforts towards pattern-based biclustering and provides the first critical strategies to efficiently discover exhaustive solutions of biclusters with shifting, scaling and symmetric assumptions with varying quality and underlying structures. Additionally, BicPAM dynamically adapts its behavior to mine data with different levels of missing values and noise.

KeywordsBiclustering Pattern mining Biomedical data analysis Electronic supplementary materialThe online version of this article doi:10.1186-s13015-014-0027-z contains supplementary material, which is available to authorized users.

Download fulltext PDF

Autor: Rui Henriques - Sara C Madeira


Documentos relacionados