Changes to mitochondrial ultrastructure in optic nerve vulnerable to secondary degeneration in vivo are limited by irradiation at 670 nmReportar como inadecuado




Changes to mitochondrial ultrastructure in optic nerve vulnerable to secondary degeneration in vivo are limited by irradiation at 670 nm - Descarga este documento en PDF. Documentación en PDF para descargar gratis. Disponible también para leer online.

BMC Neuroscience

, 14:98

Neurobiology of disease

Abstract

BackgroundTraumatic injury to the central nervous system results in damage to tissue beyond the primary injury, termed secondary degeneration. Key events thought to be associated with secondary degeneration involve aspects of mitochondrial function which may be modulated by red-near-infrared irradiation therapy R-NIR-IT, but precisely how mitochondria are affected in vivo has not been investigated. Secondary degeneration was modelled by transecting the dorsal aspect of the optic nerve in adult rats and mitochondrial ultrastructure in intact ventral optic nerve vulnerable to secondary degeneration investigated with transmission electron microscopy.

ResultsDespite reported increases in fission following central nervous system injury, we saw no change in mitochondrial densities in optic nerve vulnerable to secondary degeneration in vivo. However, in axons, frequency distributions of mitochondrial profile areas showed higher cumulative probabilities of smaller mitochondrial profiles at day 1 after injury. Glial mitochondrial profiles did not exhibit changes in area, but a more elliptical mitochondrial shape was observed at both day 1 and 7 following injury. Importantly, mitochondrial autophagic profiles were observed at days 1 and 7 in optic nerve vulnerable to secondary degeneration in vivo. Citrate synthase activity was used as an additional measure of mitochondrial mass in ventral optic nerve and was decreased at day 7, whereas mitochondrial aconitase activity increased at day 1 and day 28 after injury in optic nerve vulnerable to secondary degeneration. R-NIR-IT has been used to treat the injured central nervous system, with reported improvements in oxidative metabolism suggesting mitochondrial involvement, but ultrastructural information is lacking. Here we show that R-NIR-IT of injured animals resulted in distributions of mitochondrial areas and shape not significantly different from control and significantly reduced mitochondrial autophagic profiles. R-NIR-IT also resulted in decreased citrate synthase activity day 7 and increased aconitase activity day 1 in optic nerve vulnerable to secondary degeneration.

ConclusionsThese findings suggest that mitochondrial structure and activity of enzymes of the citric acid cycle are dynamically altered during secondary degeneration in vivo and R-NIR-IT may protect mitochondrial structure.

Electronic supplementary materialThe online version of this article doi:10.1186-1471-2202-14-98 contains supplementary material, which is available to authorized users.

Download fulltext PDF



Autor: Nadia Cummins - Carole A Bartlett - Michael Archer - Elora Bartlett - Jan M Hemmi - Alan R Harvey - Sarah A Dunlop - Me

Fuente: https://link.springer.com/







Documentos relacionados